Lecture 5: Coding of Analog Sources – Sampling and Quantization

Images and sounds are not originally digital! They are continuous signals in space/time as well as amplitude.

Typical model of an analog source: A stationary Gaussian process.

The process can be memoryless (white) or have memory (coloured). See the power spectral density.

Basic Probability Theory (Sayood App. A)

- Probability distribution function (pdf) of a stochastic variable X:
 \[P(a \leq X \leq b) = \int_a^b f_X(x) \, dx \]

- Mean / average / expected value of a stochastic variable X:
 \[E[X] = \mu_X = \int_{-\infty}^{\infty} x f_X(x) \, dx \]

- Variance of a stochastic variable X:
 \[\text{Var}[X] = \sigma_X^2 = (x - \mu_X)^2 f_X(x) \, dx \]

Going to the frequency domain (Sayood 11)

- The Fourier transform and its inverse:
 \[X(f) = F[x(t)] = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} \, dt \]
 \[x(t) = F^{-1}[X(f)] = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} \, df \]

- Power spectral density (psd):
 \[\Phi_{xx}(f) = |X(f)|^2 = F[r(\tau)] \]

- Convolution:
 \[F\{x(t) * y(t)\} = F\{x(t)\} \cdot F\{y(t)\} = X(f) \cdot Y(f) \]
Back to Coding of Analog Sources

Distortion-free coding $\Rightarrow \infty$ bits!

Thus: The rate R_C must be related to the acceptable distortion D.

Rate: The number of bits per second.

Distortion: The mean square error $D = \text{E}[(x(t) - \hat{x}(t))^2]$.

How are R_C and D related?

Rate/Distortion

According to Shannon, the following lower limit holds for a white Gaussian process with bandwidth W:

$$R_C \geq W \cdot \frac{1}{2} \log \frac{\sigma_X^2}{D} \text{ [bits/s]}$$

Example: Speech signal with $W = 4$ kHz and SNR = 40 dB.

$$10 \cdot \log \frac{\sigma_X^2}{D} = 40 \quad \Rightarrow \quad \frac{\sigma_X^2}{D} = 10^4$$

$$R_C = 4000 \cdot \frac{1}{2} \log 10^4 = 53 \text{ [kbit/s]}$$

Distortion

Definition of distortion: $D = \text{E}[(x(t) - \hat{x}(t))^2]$.

Analog signal: $D = \frac{1}{T} \int (x(t) - \hat{x}(t))^2 dt$

Sampled signal: $D = \frac{1}{N} \sum (x[n] - \hat{x}[n])^2$

Signal-to-Noise ratio (SNR) = $\frac{\sigma_X^2}{D}$

Usually measured in dB: $\text{SNR} = 10 \log \frac{\sigma_X^2}{D} \text{ [dB]}$.

Pulse-Code Modulation (PCM)

Basic idea:
1. Sample the signal \rightarrow time discrete signal.
2. Quantize the samples \rightarrow digital signal
3. Variable length coding \rightarrow more efficient representation

The distortion $D = D_{\text{sampling}} + D_{\text{quantization}}$
Sampling

In the frequency domain:

\[x_{\text{samp}}(t) = x(t) \cdot s(t) = x(t) \cdot \sum_{n} \delta(t - \frac{n}{f_s}) \]

In the frequency domain: \(X_{\text{samp}}(f) = X(f) \ast S(f) \)

Sampling, cont

If \(W < f_s/2 \), \(x(t) \) can be reconstructed without distortion.

Apply a low-pass filter removing frequencies higher than \(f_s/2 \)!

If the signal has power outside \(f_s/2 \) the distortion is:

\[D_{\text{samp}} = \mathbb{E}[(\tilde{x} - x)^2] = 2 \int_{f_s/2}^{\infty} \Phi(f) df \]

Without the lowpass-filtering we get aliasing which doubles the distortion!

Quantization

From continuous to discrete alphabet.

Example: 3 bits give 8 levels, 4 bits give 16 levels.

Designing a quantizer: Place the reconstruction levels, the interval limits, and the saturation level.

Quantization Example

Original signal

Quantized signal and the error

Coarse quantization
Quantization Distortion

For each bit, the amplitude error is halved, and thus the distortion is decreased with a factor 4, that is: \(D \propto 2^{-2R} \).

\(D \) is also proportional to the signal energy: \(D \propto \sigma_X^2 \).

Thus:
\[D = c \cdot \sigma_X^2 \cdot 2^{-2R} \]

for some constant \(c \).

Consequently, the rate is:
\[R = \frac{1}{2} \log \left(\frac{c \cdot \sigma_X^2}{D} \right) \]

Quantizing a Band-limited White Process

Sample at \(f_s = 2W \) samples/s to avoid sampling distortion. Thus, we get \(2WR \) bits/s.

\[2R = \log \left(\frac{c \cdot \sigma_X^2}{D} \right) \Rightarrow 2WR = W \log \left(\frac{c \cdot \sigma_X^2}{D} \right) \]

\[\Rightarrow R_C = W \log \left(\frac{c \cdot \sigma_X^2}{D} \right) \geq W \log \frac{\sigma_X^2}{D} \]

\[\Rightarrow c \geq 1 \]

\[\Rightarrow c_2 \geq 0 \]

Thus \(SNR = 6R \) is the best that can be achieved when quantizing a white Gaussian process.

Quantization Distortion, cont

Rewrite to get the SNR in dB:
\[\frac{\sigma_X^2}{D} = \frac{1}{c^2} 2^{-2R} \Rightarrow \]
\[SNR = 10 \cdot \log \frac{\sigma_X^2}{D} = 10 \cdot \log \frac{1}{c^2} 2^{-2R} = 10(2R \log 2 - \log c) \]
\[= 6R - c_2 \ [dB] \]

\(c \) (and thus \(c_2 = 10 \log c \)) depends on the distribution and the type of quantization. For uniform quantization \(c_2 \) is approximately 7dB (see slide 21).

Example: Digital telephony using 8 bits/sample: \(SNR = 41 \) dB

Practical Quantizers

A practical quantizer is represented by a decisions levels \(d_i \) and reconstruction levels \(r_i \).

The error: \(x - r_i \).

Distortion contribution from the ith interval:
\[\int_{d_i}^{d_i+1} (x - r_i)^2 f_X(x) \, dx. \]

Total distortion: \(D_{quant} = \sum_{i=1}^{N} \int_{d_i}^{d_i+1} (x - r_i)^2 f_X(x) \, dx. \)
Optimal Quantization ("pdf-Optimized")

\[\frac{\delta D}{\delta d_i} = 0 \Rightarrow d_i = \frac{r_{i-1} + r_i}{2} \]
(Check yourself!)

\[\frac{\delta D}{\delta r_i} = 0 \Rightarrow r_i = \frac{\int_{d_i}^{d_{i+1}} xf_X(x)dx}{\int_{d_i}^{d_{i+1}} f_X(x)dx} \]
(Center of gravity)

- Numerical solutions by Joel Max in 1960, “Max quantization”

- The table collection give optimal quantizers for 2, 4, 8, ... levels (1, 2, 3, ... bits) and the associated distortion for signals with variance=1 and different distributions (Gauss, Laplace, Rayleigh).

- Note that the step sizes are non-uniform!

The total distortion becomes \(D_{\text{quant}} = \sum p_i \Delta_x^2 = \frac{1}{12} \int \Delta^2(x)f_X(x)dx \), where \(\Delta(x) \) gives the interval length as a function of \(x \).

The number of intervals is then \(N = \int \frac{1}{\Delta(x)} dx \).

If we represent that with a fixed length code we get (the usual) \(R = \log N \) bits.

Fine Quantization

If the number of levels is very large (\(R >> 1 \)) certain approximations can be introduced to give closed-form solutions.

We approximate \(f_X(x) = f_X(d_i) \) (constant within the interval).

Thus, the probability that the signal falls in interval \(i \) is \(p_i = \Delta_i f_X(d_i) \) and the reconstruction level should be

\[r_i = \frac{d_i + d_{i+1}}{2} \]

The distortion contribution from interval \(i \) becomes

\[\int_{d_i}^{d_{i+1}} (x - r_i)^2 f_X(x)dx = \int_{-\Delta/2}^{\Delta/2} z^2 f_X(d_i)dz = p_i \int_{-\Delta/2}^{\Delta/2} z^2 dz = p_i \frac{\Delta^2}{12} \]

Case 1: Fine Uniform Quantization

Choose \(a_{\text{max}} \) so that \(P(|X| > a_{\text{max}}) \) is small!

\[D = \sum p_i \Delta_x^2 = \frac{\Delta^2}{12} \]
Fine Uniform Quantization, cont

From last slide: \[D = \frac{\Delta^2}{12} \]

Number of levels: \[N = 2^R = \frac{2a_{\text{max}}}{\Delta} \]

\[\Rightarrow \Delta = \frac{2a_{\text{max}}}{2^R} \quad \text{and} \quad D = \frac{a_{\text{max}}^2}{3} \cdot 2^{-2R} \]

Typically choose \(a_{\text{max}} = 4\sigma \) \[\Rightarrow \frac{D}{\sigma^2} = \frac{16}{3} \cdot 2^{-2R} \]

SNR = \(6R - 7.3 \) [dB]

Case 2: Fine Max-quantization

Also called pdf-optimized quantization or source adapted quantization.

Minimizing \(D \) over all \(D(x) \) and keeping \(N \) constant yields:

\[\Delta(x) = c \cdot f_x^{-1/3}(x) \]

For Gaussian distribution this gives \[\frac{D}{\sigma^2} = \frac{\pi\sqrt{3}}{2} \cdot 2^{-2R} \]

\[\text{SNR} = 6R - 4.34 \, [\text{dB}] \]

Case 3: Quantization + Entropy Coding

Use a variable length code (typically Huffman coding or arithmetic coding) for the intervals.

\[x[n] \rightarrow \text{Q} \rightarrow \text{VLC} \rightarrow \]

It can be shown that uniform quantization is always best regardless of the probability distribution of \(x \! \)!

For Gaussian distributions: \[\frac{D}{\sigma^2} = \frac{\pi e}{6} \cdot 2^{-2R} \]

\[\text{SNR} = 6R - 1.53 \, [\text{dB}] \]

Summary

1. Analog sources are modelled as stochastic processes, for example a Gaussian process with PSD (power spectral density) \(\Phi_{xx}(f) \).
2. The data rate \(r \) must be related to the allowed distortion \(D \).
3. For a white band-limited Gaussian process \(x \sim \mathcal{W} \! \mathcal{N}(0, \sigma^2/2) \) [bits/s).
4. PCM: Sampling + Quantization, \(D = D_{\text{samp}} + D_{\text{quant}} \).
5. \[D_{\text{samp}} = \frac{\pi e}{6} \cdot 2^{-2R} \]
6. \[D_{\text{quant}} = \sum_{i=1}^{2^R-1} (i - 2^{R-1})^2 \cdot 2^{R-1} \]
7. Numerical optimization of \(\epsilon_i \) gives Max-quantization (source adapted quantization, pdf-optimized quantization).
8. Fine quantization:
\[D = \frac{1}{2} \int_{-\Delta}^{\Delta} g(x) dx, \quad M = \int_{-\Delta}^{\Delta} g(x) dx \]

<table>
<thead>
<tr>
<th>Quantization Type</th>
<th>Expression</th>
<th>SNR</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine uniform quantization:</td>
<td>[D = \frac{1}{2}] [\sigma_x^2] [2^{-m}]</td>
<td>SNR = 6(R) - 7.3</td>
<td></td>
</tr>
<tr>
<td>Fine Max-quantization:</td>
<td>[D = \frac{1}{2}] [\sigma_x^2] [2^{-m}]</td>
<td>SNR = 6(R) - 4.34</td>
<td></td>
</tr>
<tr>
<td>Fine entropy coded q.:</td>
<td>[D = \frac{1}{2}] [\pi \sigma_x^2] [2^{-m}]</td>
<td>SNR = 6(R) - 1.53</td>
<td></td>
</tr>
<tr>
<td>Shannon limit:</td>
<td>[D = \sigma_x^2] [2^{-m}]</td>
<td>SNR = 6(R)</td>
<td></td>
</tr>
</tbody>
</table>